TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 18, No 2: April 2020

Face recognition based on curvelets, invariant moments features and SVM

Mohammed Talal Ghazal (Northern Technical University)
Karam Abdullah (Mosul University)



Article Info

Publish Date
01 Apr 2020

Abstract

Recent studies highlighted on face recognition methods. In this paper, a new algorithm is proposed for face recognition by combining Fast Discrete Curvelet Transform (FDCvT) and Invariant Moments with Support vector machine (SVM), which improves rate of face recognition in various situations. The reason of using this approach depends on two things. first, Curvelet transform which is a multi-resolution method, that can efficiently represent image edge discontinuities; Second, the Invariant Moments analysis which is a statistical method that meets with the translation, rotation and scale invariance in the image. Furthermore, SVM is employed to classify the face image based on the extracted features. This process is applied on each of ORL and Yale databases to evaluate the performance of the suggested method. Experimentally, the proposed method results show that our system can compose efficient and reasonable face recognition feature, and obtain useful recognition accuracy, which is able to face and side-face states detection of persons to decrease fault rate of production.

Copyrights © 2020






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...