TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 19, No 3: June 2021

Deep fingerprint classification network

Abdulsattar M. Ibrahim (Northern Technical University)
Abdulrahman K. Eesee (Northern Technical University)
Raid Rafi Omar Al-Nima (Northern Technical University)



Article Info

Publish Date
01 Jun 2021

Abstract

Fingerprint is one of the most well-known biometrics that has been used for personal recognition. However, faked fingerprints have become the major enemy where they threat the security of this biometric. This paper proposes an efficient deep fingerprint classification network (DFCN) model to achieve accurate performances of classifying between real and fake fingerprints. This model has extensively evaluated or examined parameters. Total of 512 images from the ATVS-FFp_DB dataset are employed. The proposed DFCN achieved high classification performance of 99.22%, where fingerprint images are successfully classified into their two categories. Moreover, comparisons with state-of-art approaches are provided.

Copyrights © 2021






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...