JiTEKH (Jurnal Ilmiah Teknologi Harapan)
Vol. 7 No. 1 (2019): Maret 2019

KLASIFIKASI GAMBAR DATASET FASHION-MNIST MENGGUNAKAN DEEP CONVOLUTIONAL NEURAL NETWORK: Array




Article Info

Publish Date
22 May 2019

Abstract

This study uses the Fashion-MNIST dataset from Zalando Research, which consists of 60000 images for training and 10000 images for testing, each image size 28x28 pixels. The deep learning method used is the Deep Convolutional Neural Network (DCNN), with the activation function relu on the inside of the layer and softmax at the end of the layer. Test accuracy without using dropout gets 92.69% with loss of 0.445 and using dropout gets 92.84%, loss 0.206.

Copyrights © 2019






Journal Info

Abbrev

Jitekh

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Computer Science & IT Electrical & Electronics Engineering Engineering Mechanical Engineering

Description

JITEKH merupakan jurnal ilmiah yang menyajikan artikel orisinal tentang pengetahuan dan informasi riset atau aplikasi riset dan pengembangan terkini dalam bidang keteknikan dan teknologi informasi. Ruang lingkup Jurnal JITEKH meliputi bidang Informatika, Teknik Mesin, Teknik Elektro, Sistem ...