E-Jurnal Matematika
Vol 4 No 1 (2015)

PERBANDINGAN TRANSFORMASI BOX-COX DAN REGRESI KUANTIL MEDIAN DALAM MENGATASI HETEROSKEDASTISITAS

NI WAYAN YUNI CAHYANI (Faculty of Mathematics and Natural Sciences, Udayana University)
I GUSTI AYU MADE SRINADI (Faculty of Mathematics and Natural Sciences, Udayana University)
MADE SUSILAWATI (Faculty of Mathematics and Natural Sciences, Udayana University)



Article Info

Publish Date
30 Jan 2015

Abstract

Ordinary least square (OLS) is a method that can be used to estimate the parameter in linear regression analysis. There are some assumption which should be satisfied on OLS, one of this assumption is homoscedasticity, that is the variance of error is constant. If variance of the error is unequal that so-called heteroscedasticity. The presence heteroscedasticity can cause estimation with OLS becomes inefficient. Therefore, heteroscedasticity shall be overcome. There are some method that can used to overcome heteroscedasticity, two among those are Box-Cox power transformation and median quantile regression. This research compared Box-Cox power transformation and median quantile regression to overcome heteroscedasticity. Applied Box-Cox power transformation on OLS result ????2point are greater, smaller RMSE point and confidencen interval more narrow, therefore can be concluded that applied of Box-Cox power transformation on OLS better of median quantile regression to overcome heteroscedasticity.

Copyrights © 2015






Journal Info

Abbrev

mtk

Publisher

Subject

Mathematics

Description

E-Jurnal Matematika merupakan salah satu jurnal elektronik yang ada di Universitas Udayana, sebagai media komunikasi antar peminat di bidang ilmu matematika dan terapannya, seperti statistika, matematika finansial, pengajaran matematika dan terapan matematika dibidang ilmu lainnya. Jurnal ini lahir ...