E-Jurnal Matematika
Vol 3 No 3 (2014)

PERBANDINGAN REGRESI BINOMIAL NEGATIF DAN REGRESI GENERALISASI POISSON DALAM MENGATASI OVERDISPERSI (Studi Kasus: Jumlah Tenaga Kerja Usaha Pencetak Genteng di Br. Dukuh, Desa Pejaten)

NI MADE RARA KESWARI (Faculty of Mathematics and Natural Sciences, Udayana University)
I WAYAN SUMARJAYA (Faculty of Mathematics and Natural Sciences, Udayana University)
NI LUH PUTU SUCIPTAWATI (Faculty of Mathematics and Natural Sciences, Udayana University)



Article Info

Publish Date
29 Aug 2014

Abstract

Poisson regression is a nonlinear regression that is often used to model count response variable and categorical, interval, or count regressor. This regression assumes equidispersion, i.e., the variance equals the mean. However, in practice, this assumption is often violated. One of this violation is overdispersion in which the variance is greater than the mean. There are severalĀ  methods to overcome overdispersion. Two of these methods are negative binomial regression and generalized Poisson regression. In this research, binomial negative regression and generalized Poisson regression statistically equally good in handling overdispersion.

Copyrights © 2014






Journal Info

Abbrev

mtk

Publisher

Subject

Mathematics

Description

E-Jurnal Matematika merupakan salah satu jurnal elektronik yang ada di Universitas Udayana, sebagai media komunikasi antar peminat di bidang ilmu matematika dan terapannya, seperti statistika, matematika finansial, pengajaran matematika dan terapan matematika dibidang ilmu lainnya. Jurnal ini lahir ...