E-Jurnal Matematika
Vol 2 No 2 (2013)

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON-RAPHSON DAN METODE JACOBIAN

NANDA NINGTYAS RAMADHANI UTAMI (Faculty of Mathematics and Natural Sciences, Udayana University)
I NYOMAN WIDANA (Faculty of Mathematics and Natural Sciences, Udayana University)
NI MADE ASIH (Faculty of Mathematics and Natural Sciences, Udayana University)



Article Info

Publish Date
31 May 2013

Abstract

System of nonlinear equations is a collection of some nonlinear equations. The Newton-Raphson method and Jacobian method are methods used for solving systems of nonlinear equations. The Newton-Raphson methods uses first and second derivatives and indeed does perform better than the steepest descent method if the initial point is close to the minimizer. Jacobian method is a method of resolving equations through iteration process using simultaneous equations. If the Newton-Raphson methods and Jacobian methods are compared with the exact value, the Jacobian method is the closest to exact value but has more iterations. In this study the Newton-Raphson method gets the results faster than the Jacobian method (Newton-Raphson iteration method is 5 and 58 in the Jacobian iteration method). In this case, the Jacobian method gets results closer to the exact value.

Copyrights © 2013






Journal Info

Abbrev

mtk

Publisher

Subject

Mathematics

Description

E-Jurnal Matematika merupakan salah satu jurnal elektronik yang ada di Universitas Udayana, sebagai media komunikasi antar peminat di bidang ilmu matematika dan terapannya, seperti statistika, matematika finansial, pengajaran matematika dan terapan matematika dibidang ilmu lainnya. Jurnal ini lahir ...