JINAV: Journal of Information and Visualization
Vol. 1 No. 1 (2020)

Weighted Bagging in Decision Trees: Data Mining

Elgimati, Yousef (Unknown)



Article Info

Publish Date
01 Oct 2020

Abstract

The main focus of this paper is on the use of resampling techniques to construct predictive models from data and the goal is to identify the best possible model which can produce better predications. Bagging or Bootstrap aggregating is a general method for improving the performance of given learning algorithm by using a majority vote to combine multiple classifier outputs derived from a single classifier on a bootstrap resample version of a training set. A bootstrap sample is generated by a random sample with replacement from the original training set. Inspired by the idea of bagging, we present an improved method based on a distance function in decision trees, called modified bagging (or weighted Bagging) in this study. The experimental results show that modified bagging is superior to the usual majority vote. These results are confirmed by both real data and artificial data sets with random noise. The Modified bagged classifier performs significantly better than usual bagging on various tree levels for all sample sizes. An interesting observation is that the weighted bagging performs somewhat better than usual bagging with sumps.

Copyrights © 2020






Journal Info

Abbrev

jinav

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Engineering Library & Information Science Mathematics

Description

JINAV: Journal of Information and Visualization is an international peer-reviewed open-access journal dedicated to interchange for the results of high-quality research in all aspects of information science and technology, data, knowledge, communication, and their visualization. The journal publishes ...