SITEKIN: Jurnal Sains, Teknologi dan Industri
Vol 12, No 2 (2015): Juni 2015

SISTEM IDENTIFIKASI TANDA TANGAN DENGAN PENDEKATAN SUPPORT VECTOR MACHINE

Endina Putri (Program Studi Teknik Infomatika, Fakultas Teknik, Universitas Bengkulu)



Article Info

Publish Date
30 Jun 2015

Abstract

Signature is one of the biometric humans that used widely. This system aims to recognize the signature through feature extraction and image classification method signature with Support Vector Machine (SVM). Research databases used 15 samples signatures images from students of Informatics Engineering UNIB with size 300 x 300 pixels. The system is built in the Java programming language with NetBeans IDE 8.0. The system is divided into 3 stages: preprocessing, feature extraction, and SVM classification. Preprocessing stages are binerization, noise Removal, thinning, cropping, and resizing. Feature extraction stage using Image Centroid Zone (ICZ) and Zone Centroid Zone (ZCZ) methods. Furthermore, the results of feature vectors ICZ and ZCZ be input training SVM classification. This research results shows that: (1) the greater the size of the zone, the higher the identification accuracy; (2) the smaller polynomial degree, the higher the signatures identification accuracy; (3) The best performance is obtained for 5x4 size zone and 2 degree polynomial with 97.33% signature identification accuracy.

Copyrights © 2015






Journal Info

Abbrev

sitekin

Publisher

Subject

Control & Systems Engineering Decision Sciences, Operations Research & Management Economics, Econometrics & Finance Industrial & Manufacturing Engineering Other

Description

Sesuai dengan standard ISO 45001 bahwa karyawan harus berpartisipasi dalam melakukan pencegahan kecelakaan. Untuk itu perusahaan telah menetapkan Program Hazob (Hazard Observation) untuk mengidentifikasi bahaya dan melakukan tindakan koreksinya. Penerapan Program Hazob masih dengan metode ...