Electronic Journal of Graph Theory and Applications (EJGTA)
Vol 3, No 1 (2015): Electronic Journal of Graph Theory and Applications

A Study on Topological Integer Additive Set-Labeling of Graphs

Sudev Naduvath (Vidya Academy of Science & Technology, Thrissur, Kerala, India)



Article Info

Publish Date
22 Mar 2015

Abstract

A set-labeling of a graph $G$ is an injective function $f:V(G)\to \mathcal{P}(X)$, where $X$ is a finite set and a set-indexer of $G$ is  a set-labeling such that the induced function $f^{\oplus}:E(G)\to \mathcal{P}(X)-\{\emptyset\}$ defined by $f^{\oplus}(uv) = f(u){\oplus}f(v)$ for every $uv{\in} E(G)$ is also injective. Let $G$ be a graph and let $X$ be a non-empty set. A set-indexer $f:V(G)\to \mathcal{P}(X)$  is called a topological set-labeling of $G$ if $f(V(G))$ is a topology of $X$.  An integer additive set-labeling is an injective function $f:V(G)\to \mathcal{P}(\mathbb{N}_0)$, whose associated function $f^+:E(G)\to \mathcal{P}(\mathbb{N}_0)$ is defined by $f(uv)=f(u)+f(v), uv\in E(G)$, where $\mathbb{N}_0$ is the set of all non-negative integers and $\mathcal{P}(\mathbb{N}_0)$ is its power set. An integer additive set-indexer is an integer additive set-labeling such that the induced function $f^+:E(G) \to \mathcal{P}(\mathbb{N}_0)$ defined by $f^+ (uv) = f(u)+ f(v)$ is also injective. In this paper, we extend the concepts of topological set-labeling of graphs to topological integer additive set-labeling of graphs.

Copyrights © 2015






Journal Info

Abbrev

ejgta

Publisher

Subject

Electrical & Electronics Engineering

Description

The Electronic Journal of Graph Theory and Applications (EJGTA) is a refereed journal devoted to all areas of modern graph theory together with applications to other fields of mathematics, computer science and other sciences. The journal is published by the Indonesian Combinatorial Society ...