Electronic Journal of Graph Theory and Applications (EJGTA)
Vol 5, No 1 (2017): Electronic Journal of Graph Theory and Applications

A note on the edge Roman domination in trees

Nader Jafari Rad (Department of Mathematics Shahrood University of Technology Shahrood, Iran)



Article Info

Publish Date
10 Apr 2017

Abstract

A subset $X$ of edges of a graph $G$ is called an \textit{edgedominating set} of $G$ if every edge not in $X$ is adjacent tosome edge in $X$. The edge domination number $\gamma'(G)$ of $G$ is the minimum cardinality taken over all edge dominating sets of $G$. An \textit{edge Roman dominating function} of a graph $G$ is a function $f : E(G)\rightarrow \{0,1,2 \}$ such that every edge$e$ with $f(e)=0$ is adjacent to some edge $e'$ with $f(e') = 2.$The weight of an edge Roman dominating function $f$ is the value$w(f)=\sum_{e\in E(G)}f(e)$. The edge Roman domination number of $G$, denoted by $\gamma_R'(G)$, is the minimum weight of an edge Roman dominating function of $G$. In this paper, we characterize trees with edge Roman domination number twice the edge domination number.

Copyrights © 2017






Journal Info

Abbrev

ejgta

Publisher

Subject

Electrical & Electronics Engineering

Description

The Electronic Journal of Graph Theory and Applications (EJGTA) is a refereed journal devoted to all areas of modern graph theory together with applications to other fields of mathematics, computer science and other sciences. The journal is published by the Indonesian Combinatorial Society ...