Electronic Journal of Graph Theory and Applications (EJGTA)
Vol 3, No 1 (2015): Electronic Journal of Graph Theory and Applications

The signed Roman domatic number of a digraph

Seyed Mahmoud Sheikholeslami (Azarbaijan Shahid Madani University)
Lutz Volkmann (RWTH Aachen University)



Article Info

Publish Date
22 Mar 2015

Abstract

Let $D$ be a finite and simple digraph with vertex set $V(D)$.A {\em signed Roman dominating function} on the digraph $D$ isa function  $f:V (D)\longrightarrow \{-1, 1, 2\}$ such that$\sum_{u\in N^-[v]}f(u)\ge 1$ for every $v\in V(D)$, where $N^-[v]$ consists of $v$ andall inner neighbors of $v$, and every vertex $u\in V(D)$ for which $f(u)=-1$ has an innerneighbor $v$ for which $f(v)=2$. A set $\{f_1,f_2,\ldots,f_d\}$ of distinct signedRoman dominating functions on $D$ with the property that $\sum_{i=1}^df_i(v)\le 1$ for each$v\in V(D)$, is called a {\em signed Roman dominating family} (of functions) on $D$. The maximumnumber of functions in a signed Roman dominating family on $D$ is the {\em signed Roman domaticnumber} of $D$, denoted by $d_{sR}(D)$. In this paper we initiate the study of signed Romandomatic number in digraphs and we present some sharp bounds for $d_{sR}(D)$. In addition, wedetermine the signed Roman domatic number of some digraphs.  Some of our results are extensionsof well-known properties of the signed Roman domatic number of graphs.

Copyrights © 2015






Journal Info

Abbrev

ejgta

Publisher

Subject

Electrical & Electronics Engineering

Description

The Electronic Journal of Graph Theory and Applications (EJGTA) is a refereed journal devoted to all areas of modern graph theory together with applications to other fields of mathematics, computer science and other sciences. The journal is published by the Indonesian Combinatorial Society ...