JURNAL INSTEK (Informatika Sains dan Teknologi)
Vol 6 No 1 (2021): APRIL

PERBANDINGAN MODEL LOGISTIC REGRESSION DAN NEURAL NETWORK PADA KELAHIRAN BAYI DENGAN BERAT BADAN RENDAH

H, M HASRUL (Unknown)



Article Info

Publish Date
07 Jan 2021

Abstract

Evaluasi risiko kelahiran bayi dengan berat badan lahir rendah disingkat BBLR menjadi suatu persoalan yang menarik untuk dibahas. Sejumlah penelitian bidang kesehatan khususnya persalinan bertujuan meminimalisir risiko BBLR telah banyak dilakukan dalam usaha mengelak bayi lahir secara abnormal. Data dikelompokkan menjadi dua kelas, bayi dengan berat badan rendah dan bayi dengan berat normal. Sehingga teknik klasifikasi data mining menjadi tepat untuk diterapkan. Penelitian ini mengenai perbandingan algoritma Logistic Regression dan Neural Network yang diterapkan pada data kelahiran bayi berat badan rendah (low birth height). Hasil eksperimen menunjukkan bahwa Neural Network lebih baik dalam melakukan klasifikasi risiko BBLR 97,37% dibanding Logistic Regression dengan akurasi sebesar 94,71. Penerapan klasifikasi data mining menggunakan Logistic Regression dan Neural Network dapat menghasilkan nilai AUC yang baik (excellence classification) sehingga dapat diimplementasikan untuk menentukan  risiko BBLR.Kata Kunci: Bayi berat badan lahir rendah, Klasifikasi, Logistic Regression, Neural Network;  

Copyrights © 2021






Journal Info

Abbrev

instek

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Scope topics include, but are not limited to : Agent System and Multi-Agent Systems Analysis & Design of Information System Artificial Intelligence Big Data and Data Mining Cloud & Grid Computing Computer Vision Cryptography Decision Support System DNA Computing E-Government E-Business ...