Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 3 No 2 (2019): Agustus 2019

Pengaruh Semantic Expansion pada Naïve Bayes Classifier untuk Analisis Sentimen Tokoh Masyarakat

Muhamad Satria Adhi (Institut Teknologi Telkom Purwokerto)
Muhammad Zidny Nafan (Institut Teknologi Telkom Purwokerto)
Elisa Usada (Institut Teknologi Telkom Purwokerto)



Article Info

Publish Date
01 Aug 2019

Abstract

Sentiment analysis is a field of study that analyzes one's opinions, sentiments, evaluations, attitudes and emotions that are conveyed in written text. There are several factors that cause low accuracy results from sentiment analysis. These factors such as less optimal stemming process, word negation process that does not produce maximum results, writing errors in the dataset, and others. These problems can be overcome by optimizing the process of normalizing words, negation, stemming, and adding methods of semantic expansion. The purpose of adding the Semantic Expansion method and improvement in the process is to increase the accuracy value of the Sentiment Analysis process. This study aims to create a sentiment analysis model from public comments on a public figure (Ridwan Kamil) using the Naïve Bayes Classifier algorithm. Based on the test results in the sentiment analysis model using the Naïve Bayes Classifier method with the addition of the semantic expansion method it is proven that it can improve accuracy. The accuracy obtained using the semantic expansion method is 72%. While the value of accuracy without semantic expansion is 70%.

Copyrights © 2019






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...