Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 4 No 4 (2020): Agustus 2020

Optimasi Model Transfer Learning Convolutional Neural Network Untuk Klasifikasi Citra CIFAR-10

Rastri Prathivi (Universitas Semarang)



Article Info

Publish Date
17 Aug 2020

Abstract

The low accuracy when performing the image classification process is a problem that often occurs. The image classification process requires the completeness of the features of the image which form an informative image pattern so that information from the image can be displayed. The purpose of this study is to classify images in the CIFAR-10 image dataset using the CNN method. Initially the CNN method gave an accuracy of 79.4% but had a long computation time of 12 hours with 10,000 iterations. The optimization process for the CNN method is carried out by combining the CNN method, the PCA algorithm and the t-SNE algorithm. The algorithm is used to reduce the length of the image matrix in the initial transfer of learning without reducing the information in the image so that the classification process can be done correctly. The final result obtained from the optimization has an accuracy of 90.5%. With an optimization rate of 11%. The resulting time is more efficient, namely 3 hours for the feature transfer-value process and 6 minutes for the testing process with 10,000 iterations.

Copyrights © 2020






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...