ELKHA : Jurnal Teknik Elektro
Vol. 12 No. 2 October 2020

Klasifikasi Jenis Buah dan Sayuran Menggunakan SVM Dengan Fitur Saliency-HOG dan Color Moments

Yohannes Yohannes (STMIK Global Informatika MDP)
Muhammad Rizky Pribadi (STMIK Global Informatika MDP)
Leo Chandra (STMIK Global Informatika MDP)



Article Info

Publish Date
11 Oct 2020

Abstract

Fruit is part of a plant that comes from the flower or pistil of the plant and usually has seeds. Meanwhile, vegetables are leaves, legumes, or seeds that can be cooked. Fruits and vegetables have many variants that can be distinguished based on color, shape, and texture. The Saliency-HOG feature and Color moments were used in this study to extract shapes and colors features in fruit and vegetable images. In this study, the Support Vector Machine (SVM) method was used to classify the types of fruit and vegetables. The dataset used in this study is a public dataset consisting of 114 images of fruit and vegetables. Each type of fruit and vegetable contains 100 images consisting of 70 images as training data and 30 images as testing data. There are 4 saliency features used in the testing phase, namely Region Contrast (RC), Frequency-tuned (FT), Histogram Contrast (HC), and Spectral Residual (SR). Based on the test results, the Saliency-HOG and Color Moments features were able to provide good results with the best precision, recall, and accuracy being 98.57%, 98.55%, and 99.120%, respectively.

Copyrights © 2020






Journal Info

Abbrev

Elkha

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Energy Industrial & Manufacturing Engineering

Description

The ELKHA publishes high-quality scientific journals related to Electrical and Computer Engineering and is associated with FORTEI (Forum Pendidikan Tinggi Teknik Elektro Indonesia / Indonesian Electrical Engineering Higher Education Forum). The scope of this journal covers the theory development, ...