Jurnal Gaussian
Vol 7, No 4 (2018): Jurnal Gaussian

PEMODELAN INDEKS HARGA KONSUMEN DI JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE SEEMINGLY UNRELATED REGRESSION (GSTAR-SUR)

Mega Fitria Andriyani (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Abdul Hoyyi (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Hasbi Yasin (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)



Article Info

Publish Date
30 Nov 2018

Abstract

The Generalized Space Time Autoregressive (GSTAR) model with Seemingly Unrelated Regression (SUR) estimation method or often called GSTAR-SUR is more efficient to be used for residual correlation than Ordinary Least Square (OLS) estimation method. The SUR estimation method utilizes residual correlation information to improve the estimated efficiency resulting in a smaller standard error. The purpose of this research is to get the GSTAR-SUR model according to Consumer Price Index (CPI) data in four regencies or cities in Central Java namely Purwokerto, Surakarta, Semarang, and Tegal. Based on the assumed white noise assumption, the smallest MAPE and RMSE averages, the best model chosen in this research is the GSTAR-SUR(11)I(1) model with the heavy of normalized cross-correlation with the average MAPE value of 0.4455% and RMSE value of 0.80582. The best model obtained explains that the CPI data in Purwokerto, Semarang, and Tegal not only influenced by the previous time but also influenced by the locations. Meanwhile, the CPI data in Surakarta is only influenced by the previous time, but it is not affected by other locations. Keywords: SUR, OLS, Consumer Price Index

Copyrights © 2018






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...