Jurnal Gaussian
Vol 9, No 3 (2020): Jurnal Gaussian

ANALISIS SENTIMEN GOJEK PADA MEDIA SOSIAL TWITTER DENGAN KLASIFIKASI SUPPORT VECTOR MACHINE (SVM)

Nur Fitriyah (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Budi Warsito (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Di Asih I Maruddani (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)



Article Info

Publish Date
30 Aug 2020

Abstract

Appearance of PT Aplikasi Karya Anak Bangsa or as known as Gojek since 2015 give a convenience facility to people in Indonesia especially in daily activities. Sentiment analysis on Twitter social media can be the option to see how Gojek users respond to the services that have been provided. The response was classified into positive sentiment and negative sentiment using Support Vector Machine method with model evaluation 10-fold cross validation. The kernel used is the linear kernel and the RBF kernel. Data labeling can be done with manually and sentiment scoring. The test results showed that the RBF kernel gets overall accuracy and the highest kappa accuracy on manual data labeling and sentiment scoring. On manual data labeling, the overall accuracy is 79.19% and kappa accuracy is 16.52%. While the labeling of data with sentiment scoring obtained overall accuracy of 79.19% and kappa accuracy of 21%. The greater overall accuracy value and kappa accuracy obtained, the better performance of the classification model. Keywords: Gojek, Twitter, Support Vector Machine, overall accuracy, kappa accuracy

Copyrights © 2020






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...