Jurnal Matematika dan Statistika serta Aplikasinya (Jurnal MSA)
Vol 8 No 2 (2020): Volume 8 Nomor 2

ANALISIS SENTIMEN PENGGUNA INSTAGRAM TERHADAP KEBIJAKAN KEMDIKBUD MENGENAI BANTUAN KUOTA INTERNET DENGAN METODE SUPPORT VECTOR MACHINE (SVM)

Hakim, Syifa Rahmawati (Unknown)
Rizki, M. Alfa (Unknown)
Zekha F, Noval Irgi (Unknown)
Fitri, Nurhidayatul (Unknown)
A, Yolanda Rizkie (Unknown)
Nooraeni, Rani (Unknown)



Article Info

Publish Date
23 Dec 2020

Abstract

COVID-19 merupakan suatu pandemi baru yang disebabkan oleh coronavirus dan banyak memberikan dampak salah satunya pada dunia pendidikan sehingga mengharuskan menggunakan sistem pembelajaran jarak jauh. Untuk mendukung sistem tersebut, pemerintah Indonesia melalui Kemdikbud memberikan bantuan kepada peserta didik dan tenaga pendidik berupa bantuan kuota internet. Sebagian masyarakat menyampaikan tanggapan dan opininya mengenai bantuan kuota yang disediakan pemerintah di media sosial salah satunya Instagram. Opini-opini tersebut dimanfaatkan untuk mengetahui penilaian masyarakat terhadap bantuan kuota apakah positif atau negatif dengan menggunakan analisis sentimen. Data yang digunakan pada penelitian ini adalah data komentar pengguna instagram di 7 unggahan akun @kemdikbud.ri yang berkaitan dengan bantuan kuota internet mulai tanggal 27 Agustus – 30 September 2020 yang diperoleh melalui scraping sehingga didapatkan sebanyak 4520 komentar yang kemudian diolah dengan melakukan text preprocessing dan diklasifikasikan menggunakan algoritma support vector machine. Hasil dari tahapan preprocessing sebanyak 32.81% (1483 komentar) data siap digunakan untuk analisis sentimen. Setelah dilakukan analisis klasifikasi didapatkan model yang digunakan yaitu tipe C-Classification, dimana model pendekatan yang digunakan adalah SVM-Kernel Radial (Radial Basis Function) dan menghasilkan persentase komentar berupa sentimen positif sebanyak 61.5%. Model SVM Radian (RBF) mampu melakukan pengklasifikasian respons pengguna Instagram terkait pemberian bantuan kuota internet dengan cukup baik. Hal tersebut dibuktikan dengan nilai evaluasi model berupa tingkat akurasi seebsar 79.67%, sensitivitas sebesar 78.89%, dan spesifisitas sebesar 81.82%.

Copyrights © 2020






Journal Info

Abbrev

msa

Publisher

Subject

Decision Sciences, Operations Research & Management Economics, Econometrics & Finance Environmental Science Mathematics Medicine & Pharmacology

Description

The Jurnal MSA (Jurnal Matematika dan Statistika serta Aplikasinya) is a brand new on-line anonymously peer-reviewed journal interested in any aspect related to mathematics and statistics with their application. The Jurnal MSA is ready to receive manuscripts on all aspects concerning any aspect ...