Abstract. Newton's method is one of the numerical methods used in finding polynomial roots. This method will be very effective to use, if the initial estimate of the roots for the Newton iteration function satisfies sufficient Newtonian convergence, [11]. In this article we will analyze the efficacy of this method by looking at the relationship between the fixed point method and Newton's iteration function. When the iteration of the function converges to the root, the velocity of convergence can also be determined. In terms of the speed of convergence, it turns out to be very dependent on the multiplicity of Newton's method itself.
Copyrights © 2020