MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer
Vol 20 No 2 (2021)

Feature Selection Correlation-Based pada Prediksi Nasabah Bank Telemarketing untuk Deposito

Annisa Nurul Puteri (STMIK AKBA)
Arizal Arizal (Politeknik Siber dan Sandi Negara)
Andini Dani Achmad (Universitas Hasanuddin)



Article Info

Publish Date
30 May 2021

Abstract

Pre-processing merupakan tahap yang penting dalam melakukan klasifikasi data. Pre-processing berguna untuk mempersiapkan data sehingga teknik klasifikasi yang diterapkan menghasilkan pola yang berkualitas dan akurat. Salah satu teknik data pre-processing yang sering digunakan untuk mengetahui atribut yang paling berpengaruh pada sebuah dataset adalah feature selection. Data yang digunakan dalam penelitian ini adalah customer data collection dari a Portuguese banking institution in UCI Machine Learning Repository. Penelitian ini menggunakan metode feature selection correlation-based yang dikombinasikan dengan metode klasifikasi Multilayer Perceptron Neural Networks. Tujuan penelitian ini untuk mengidentifikasi atribut yang paling relevan dan berpengaruh dari dataset dalam memprediksi nasabah yang potensial untuk penawaran deposito berjangka. Penelitian ini menghasilkan 10 atribut yang memiliki ranking teratas. Atribut-atribut tersebut adalah duration, previous, contact, cons.price.idx, month, cons.cof.idx, age, job, marital, dan housing. Hasil klasifikasi dari atribut yang terpilih memiliki tingkat akurasi tertinggi sebesar 80.5% dan tingkat akurasi terendah 79.1%.

Copyrights © 2021






Journal Info

Abbrev

matrik

Publisher

Subject

Computer Science & IT

Description

MATRIK adalah salah satu Jurnal Ilmiah yang terdapat di Universitas Bumigora Mataram (eks STMIK Bumigora Mataram) yang dikelola dibawah Lembaga Penelitian dan Pengabadian kepada Masyarakat (LPPM). Jurnal ini bertujuan untuk memberikan wadah atau sarana publikasi bagi para dosen, peneliti dan ...