Jurnal Aplikasi Statistika & Komputasi Statistik
Vol 11 No 2 (2019): Journal of Statistical Application and Computational Statistics

Peramalan Time Series Menggunakan Gaussian Kernel PCA dan Autoregressive

Kasiful Aprianto (Unknown)



Article Info

Publish Date
08 Sep 2020

Abstract

Peramalan time series menjadi bagian penting dalam pengambilan keputusan karena mampu memberikan gambaran atau kejadian mendatang berupa data prediksi. Paper ini menawarkan gaussian kernel PCA dan Autoregressive (KPCA-AR) sebagai metode peramalan untuk melakukan prediksi data. Metode KPCA-AR bekerja dengan melakukan pemetaan data ke dimensi yang lebih tinggi menggunakan kernel dengan distribusi gaussian. Setelah itu dilakukan transformasi data dengan PCA agar dimensi yang dihasilkan dapat direduksi dengan varian maksimum sehingga tidak mengurangi karakteristik data secara signifikan. Data inilah yang kemudian digunakan untuk melakukan peramalan menggunakan autoregressive. Paper ini juga membandingkan beberapa metode peramalan lainnya seperti ARIMA, ANN, SVM, dan Eksponensial Smoothin. Hasil menunjukkan bahwa KPCA-AR secara umum mampu memebrikan prediksi yang baik dan bisa digunakan sebagai alternative dari metode perhitungan yang ada dilihat dari kelebihan ataupun kekurangannya.

Copyrights © 2019






Journal Info

Abbrev

jurnalasks

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics

Description

Redaksi menerima karya ilmiah atau artikel penelitian mengenai kajian teori statistika dan komputasi statistik pada bidang ekonomi dan sosial dan kependudukan, serta teknologi informasi. Redaksi berhak menyunting tulisan tanpa mengubah makna subtansi tulisan. Isi jurnal Aplikasi Statistika dan ...