International Journal of Electrical and Computer Engineering
Vol 11, No 6: December 2021

Multiclassification of license plate based on deep convolution neural networks

Masar Abed Uthaib (Informatics Institute for Postgraduate Studies)
Muayad Sadik Croock (University of Technology)



Article Info

Publish Date
01 Dec 2021

Abstract

In the classification of license plate there are some challenges such that the different sizes of plate numbers, the plates' background, and the number of the dataset of the plates. In this paper, a multiclass classification model established using deep convolutional neural network (CNN) to classify the license plate for three countries (Armenia, Belarus, Hungary) with the dataset of 600 images as 200 images for each class (160 for training and 40 for validation sets). Because of the small numbers of datasets, a preprocessing on the dataset is performed using pixel normalization and image data augmentation techniques (rotation, horizontal flip, zoom range) to increase the number of datasets. After that, we feed the augmented images into the convolution layer model, which consists of four blocks of convolution layer. For calculating and optimizing the efficiency of the classification model, a categorical cross-entropy and Adam optimizer used with a learning rate was 0.0001. The model's performance showed 99.17% and 97.50% of the training and validation sets accuracies sequentially, with total accuracy of classification is 96.66%. The time of training is lasting for 12 minutes. An anaconda python 3.7 and Keras Tensor flow backend are used.

Copyrights © 2021






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...