International Journal of Electrical and Computer Engineering
Vol 11, No 4: August 2021

A transfer learning with deep neural network approach for diabetic retinopathy classification

Mohammed Al-Smadi (Jordan University of Science and Technology)
Mahmoud Hammad (Jordan University of Science and Technology)
Qanita Bani Baker (Jordan University of Science and Technology)
Sa’ad A. Al-Zboon (Jordan University of Science and Technology)



Article Info

Publish Date
01 Aug 2021

Abstract

Diabetic retinopathy is an eye disease caused by high blood sugar and pressure which damages the blood vessels in the eye. Diabetic retinopathy is the root cause of more than 1% of the blindness worldwide. Early detection of this disease is crucial as it prevents it from progressing to a more severe level. However, the current machine learning-based approaches for detecting the severity level of diabetic retinopathy are either, i) rely on manually extracting features which makes an approach unpractical, or ii) trained on small dataset thus cannot be generalized. In this study, we propose a transfer learning-based approach for detecting the severity level of the diabetic retinopathy with high accuracy. Our model is a deep learning model based on global average pooling (GAP) technique with various pre-trained convolutional neural net- work (CNN) models. The experimental results of our approach, in which our best model achieved 82.4% quadratic weighted kappa (QWK), corroborate the ability of our model to detect the severity level of diabetic retinopathy efficiently.

Copyrights © 2021






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...