International Journal of Electrical and Computer Engineering
Vol 11, No 5: October 2021

A new feature extraction approach based on non linear source separation

Hela Elmannai (Princess Nourah bint Abdulrahman University)
Mohamed Saber Naceur (The National Engineering School of Tunis (ENIT))
Mohamed Anis Loghmari (The National Engineering School of Tunis (ENIT))
Abeer AlGarni (The National Engineering School of Tunis (ENIT))



Article Info

Publish Date
01 Oct 2021

Abstract

A new feature extraction approach is proposed in this paper to improve the classification performance in remotely sensed data. The proposed method is based on a primary sources subset (PSS) obtained by nonlinear transform that provides lower space for land pattern recognition. First, the underlying sources are approximated using multilayer neural networks. Given that, Bayesian inferences update unknown sources’ knowledge and model parameters with information’s data. Then, a source dimension minimizing technique is adopted to provide more efficient land cover description. The support vector machine (SVM) scheme is developed by using feature extraction. The experimental results on real multispectral imagery demonstrates that the proposed approach ensures efficient feature extraction by using several descriptors for texture identification and multiscale analysis. In a pixel based approach, the reduced PSS space improved the overall classification accuracy by 13% and reaches 82%. Using texture and multi resolution descriptors, the overall accuracy is 75.87% for the original observations, while using the reduced source space the overall accuracy reaches 81.67% when using jointly wavelet and Gabor transform and 86.67% when using Gabor transform. Thus, the source space enhanced the feature extraction process and allow more land use discrimination than the multispectral observations.

Copyrights © 2021






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...