International Journal of Electrical and Computer Engineering
Vol 11, No 6: December 2021

Using the modified k-mean algorithm with an improved teaching-learning-based optimization algorithm for feedforward neural network training

Morteza Jouyban (Allameh Tabataba’i University)
Mahdieh Khorashadizade (Sistan and Baluchestan University)



Article Info

Publish Date
01 Dec 2021

Abstract

In this paper we proposed a novel procedure for training a feedforward neural network. The accuracy of artificial neural network outputs after determining the proper structure for each problem depends on choosing the appropriate method for determining the best weights, which is the appropriate training algorithm. If the training algorithm starts from a good starting point, it is several steps closer to achieving global optimization. In this paper, we present an optimization strategy for selecting the initial population and determining the optimal weights with the aim of minimizing neural network error. Teaching-learning-based optimization (TLBO) is a less parametric algorithm rather than other evolutionary algorithms, so it is easier to implement. We have improved this algorithm to increase efficiency and balance between global and local search. The improved teaching-learning-based optimization (ITLBO) algorithm has added the concept of neighborhood to the basic algorithm, which improves the ability of global search. Using an initial population that includes the best cluster centers after clustering with the modified k-mean algorithm also helps the algorithm to achieve global optimum. The results are promising, close to optimal, and better than other approach which we compared our proposed algorithm with them.

Copyrights © 2021






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...