International Journal of Electrical and Computer Engineering
Vol 11, No 4: August 2021

Comparative analysis of ReliefF-SVM and CFS-SVM for microarray data classification

Mochamad Agusta Naofal Hakim (Telkom University)
Adiwijaya Adiwijaya (Telkom University)
Widi Astuti (Telkom University)



Article Info

Publish Date
01 Aug 2021

Abstract

Cancer is one of the main causes of death in the world where the World Health Organization (WHO) recognized cancer as among the top causes of death in 2018. Thus, detecting cancer symptoms is paramount in order to cure and subsequently reduce the casualties due to cancer disease. Many studies have been developed data mining approaches to detect symptoms of cancer through a classifying human gene data expression. One popular approach is using microarray data based on DNA. However, DNA microarray data has many dimensions that can have a detrimental effect on the accuracy of classification. Therefore, before performing classification, a feature selection technique must be used to eliminate features that do not have important information to support the classification process. The feature selection techniques used were ReliefF and correlation-based feature selection (CFS) and a classification technique used in this study is support vector machine (SVM). Several testing schemes were applied in this analysis to compare the performance of ReliefF and CFS with SVM. It showed that the ReliefF outperformed compared with CFS as microarray data classification approach.

Copyrights © 2021






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...