IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 10, No 3: September 2021

Hybrid of convolutional neural network algorithm and autoregressive integrated moving average model for skin cancer classification among Malaysian

Chee Ka Chin (Universiti Malaysia Sarawak)
Dayang Azra binti Awang Mat (Universiti Malaysia Sarawak)
Abdulrazak Yahya Saleh (Universiti Malaysia Sarawak)



Article Info

Publish Date
01 Sep 2021

Abstract

Skin cancer is a widely spreading cause of mortality among the people specifically living on or near the equatorial belt. Early detection of skin cancer significantly improves the recovery prevalence and the chance of surviving. Without the assist of computer-aided decision (CAD) system, skin cancer classification is the challenging task for the dermatologist to differentiate the type of skin cancer and provide the suitable treatment. Recently, the development of machine learning and pretrained deep neural network (DNN) shows the tremendous performance in image classification task which also provide the promising performance in medical field. However, these machine learning methods cannot get the deep features from network flow which resulting in low accuracy and the pretrained DNN has the complex network with a huge number of parameters causes the limited classification accuracy. This paper focuses on the classification of skin cancer to identify whether it is basal cell carcinoma, melanoma or squamous cell carcinoma by using the development of hybrid convolutional neural network algorithm and autoregressive integrated moving average model (CNN-ARIMA). The CNNARIMA model was trained and found to produce the best accuracy of 92.25%.

Copyrights © 2021






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...