IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 10, No 2: June 2021

DDoS attack detection using deep learning

Thapanarath Khempetch (King Mongkut'
s University of Technology)

Pongpisit Wuttidittachotti (King Mongkut'
s University of Technology)



Article Info

Publish Date
01 Jun 2021

Abstract

Nowadays, IoT devices are widely used both in daily life and in corporate and industrial environments. The use of these devices has increased dramatically and by 2030 it is estimated that their usage will rise to 125 billion devices causing enormous flow of information. It is likely that it will also increase distributed denial-of-service (DDoS) attack surface. As IoT devices have limited resources, it is impossible to add additional security structures to it. Therefore, the risk of DDoS attacks by malicious people who can take control of IoT devices, remain extremely high. In this paper, we use the CICDDoS2019 dataset as a dataset that has improved the bugs and introducing a new taxonomy for DDoS attacks, including new classification based on flows network. We propose DDoS attack detection using the deep neural network (DNN) and long short-term memory (LSTM) algorithm. Our results show that it can detect more than 99.90% of all three types of DDoS attacks. The results indicate that deep learning is another option for detecting attacks that may cause disruptions in the future.

Copyrights © 2021






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...