IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 10, No 1: March 2021

Implementation of an incremental deep learning model for survival prediction of cardiovascular patients

Sanaa Elyassami (Abu Dhabi Polytechnic)
Achraf Ait Kaddour (2Manchester University, UK)



Article Info

Publish Date
01 Mar 2021

Abstract

Cardiovascular diseases remain the leading cause of death, taking an estimated 17.9 million lives each year and representing 31% of all global deaths. The patient records including blood reports, cardiac echo reports, and physician’s notes can be used to perform feature analysis and to accurately classify heart disease patients. In this paper, an incremental deep learning model was developed and trained with stochastic gradient descent using feedforward neural networks. The chi-square test and the dropout regularization have been incorporated into the model to improve the generalization capabilities and the performance of the heart disease patients' classification model. The impact of the learning rate and the depth of neural networks on the performance were explored. The hyperbolic tangent, the rectifier linear unit, the Maxout, and the exponential rectifier linear unit were used as activation functions for the hidden and the output layer neurons. To avoid over-optimistic results, the performance of the proposed model was evaluated using balanced accuracy and the overall predictive value in addition to the accuracy, sensitivity, and specificity. The obtained results are promising, and the proposed model can be applied to a larger dataset and used by physicians to accurately classify heart disease patients.

Copyrights © 2021






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...