International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol 9, No 3: November 2020

Efficient adaptation of the Karatsuba algorithm for implementing on FPGA very large scale multipliers for cryptographic algorithms

Walder Andre (Royal Military College of Canada)



Article Info

Publish Date
01 Nov 2020

Abstract

Here, we present a modified version of the Karatsuba algorithm to facilitate the FPGA-based implementation of three signed multipliers: 32-bit × 32-bit, 128-bit x 128-bit, and 512-bit × 512-bit. We also implement the conventional 32-bit × 32-bit multiplier for comparative purposes. The Karatsuba algorithm is preferable for multiplications with very large operands such as 64-bit × 64-bit, 128-bit × 128-bit, 256-bit × 256-bit, 512-bit × 512-bit multipliers and up. Experimental results show that the Karatsuba multiplier uses less hardware in the FPGA compared to the conventional multiplier. The Xilinx xc7k325tfbg900 FPGA using the Genesis 2 development board is used to implement the proposed scheme. The results obtained are promising for applications that require rapid implementation and reconfiguration of cryptographic algorithms. Here, we present a modified version of the Karatsuba algorithm to facilitate the FPGA-based implementation of three signed multipliers: 32-bit × 32-bit, 128-bit x 128-bit, and 512-bit × 512-bit. We also implement the conventional 32-bit × 32-bit multiplier for comparative purposes. The Karatsuba algorithm is preferable for multiplications with very large operands such as 64-bit × 64-bit, 128-bit × 128-bit, 256-bit × 256-bit, 512-bit × 512-bit multipliers and up. Experimental results show that the Karatsuba multiplier uses less hardware in the FPGA compared to the conventional multiplier. The Xilinx xc7k325tfbg900 FPGA using the Genesis 2 development board is used to implement the proposed scheme. The results obtained are promising for applications that require rapid implementation and reconfiguration of cryptographic algorithms.

Copyrights © 2020






Journal Info

Abbrev

IJRES

Publisher

Subject

Economics, Econometrics & Finance

Description

The centre of gravity of the computer industry is now moving from personal computing into embedded computing with the advent of VLSI system level integration and reconfigurable core in system-on-chip (SoC). Reconfigurable and Embedded systems are increasingly becoming a key technological component ...