International Journal of Industrial Optimization (IJIO)
Vol 1, No 1 (2020)

Integration of lot sizing and scheduling models to minimize production cost and time in the automotive industry

Badri, Huda Muhamad (Unknown)
Khamis, Nor Kamaliana (Unknown)
Ghazali, Mariyam Jameelah (Unknown)



Article Info

Publish Date
28 Feb 2020

Abstract

Lot planning and production scheduling are important processes in the manufacturing industry. This study is based on the case study of automotive spare parts manufacturing firm (Firm-A), which produces various products based on customer demand. Several complex problems have been identified due to different production process flows for different products with different machine capability considerations at each stage of the production process. Based on these problems, this study proposes three integrated models that include lot planning and scheduling to minimize production costs, production times, and production costs and time simultaneously. These can be achieved by optimizing model solutions such as job order decisions and production quantities on the production process. Next, the genetic algorithm (GA) and the Taguchi approach are used to optimize the models by finding the optimal model solution for each objective. Model testing is presented using numerical examples and actual case data from Firm-A. The model testing analysis is performed using Microsoft Excel software to develop a model based on mathematical programming to formulate all three objective functions. Meanwhile, GeneHunter software is used to represent the optimization process using GA. The results show production quantity and job sequence play an essential role in reducing the cost and time of production by Rp 42.717.200,00 and 31392.82 minutes (65.4 days), respectively. The findings of the study contribute to the production management of Firm-A in helping to make decisions to reduce the time and costs of production strategically, where it provides a guideline for complex production activities.

Copyrights © 2020






Journal Info

Abbrev

ijio

Publisher

Subject

Decision Sciences, Operations Research & Management Engineering Industrial & Manufacturing Engineering

Description

The Journal invites original articles and not simultaneously submitted to another journal or conference. The whole spectrums of Industrial Engineering are welcome but are not limited to Metaheuristics, Simulation, Design of Experiment, Data Mining, and Production System. 1. Metaheuristics: ...