Journal of Mathematical and Fundamental Sciences
Vol. 9 No. 3 (1975)

The Multiplication Problem for Spheres

Howard Stauffer (Department of Mathematics, The National University of Malaysia, Kuala Lumpur)



Article Info

Publish Date
05 Feb 2019

Abstract

Abstract. The multiplication problem for spheres is to determine which spheres in Euclidean space Sn-1 -"º En permit a continuous multiplication. This paper presents the topological K-theory proof that it is only possible when n = 1, 2, 4, and 8. These cases correspond to S0 -"º E1, S1 -"º E2, S3 -"º E4, and S7 -"º E8 where the multiplications are given respectively by the real numbers, complex numbers, quaternions, and Cayley numbers.  Ringkasan. Masalah pendarapan bagi bola adalah masalah untuk menentukan bola-bola dalam Ruang Euclid Sn-1 -"º En  membenarkan suatu pendarapan yang kontinu. Tulisan ini menyampaikan bukti teori K topologi bahwa hanya dapat terjadi abila n = 1, 2, 4, dan 8. Kasus ini bersesuaian dengan S0 -"º E1, S1 -"º E2, S3 -"º E4, dan S7 -"º E8 di mana pendarapan-pendarapan diberikan oleh bilangan-bilangan riil, kompleks, kuaternion, dan bilangan Cayley.

Copyrights © 1975






Journal Info

Abbrev

jmfs

Publisher

Subject

Astronomy Chemistry Earth & Planetary Sciences Mathematics Physics

Description

Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, ...