Journal of Mathematical and Fundamental Sciences
Vol. 52 No. 3 (2020)

On Subspace-ergodic Operators

Mansooreh Moosapoor (Department of Mathematics, Farhangian University, Tarbiat Moallem Ave, Tehran 1998963341.)



Article Info

Publish Date
31 Dec 2020

Abstract

In this paper, we define subspace-ergodic operators and give examples of these operators. We show that by any given separable infinite-dimensional Banach space, subspace-ergodic operators can be constructed. We demonstrate that an invertible operator T is subspace-ergodic if and only if T-1 is subspace-ergodic. We prove that the direct sum of two subspace-ergodic operators is subspace-ergodic and if the direct sum of two operators is subspace-ergodic, then each of them is subspace-ergodic. Also, we investigate relations between subspace-ergodic and subspace-mixing operators. For example, we show that if T is subspace-mixing and invertible, then Tn and T-n are subspace-ergodic for n∈ℕ.

Copyrights © 2020






Journal Info

Abbrev

jmfs

Publisher

Subject

Astronomy Chemistry Earth & Planetary Sciences Mathematics Physics

Description

Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, ...