Journal of Information Technology and Computer Science
Vol. 6 No. 1: April 2021

Comparison of Bagging Ensemble Combination Rules for Imbalanced Text Sentiment Analysis

Cahya, Reiza Adi (Unknown)
Bachtiar, Fitra A. (Unknown)
Mahmudy, Wayan Firdaus (Unknown)



Article Info

Publish Date
30 Apr 2021

Abstract

The wealth of opinions expressed by users on micro-blogging sites can be beneficial for product manufacturers of service providers, as they can gain insights about certain aspects of their products or services. The most common approach for analyzing text opinion is using machine learning. However. opinion data are often imbalanced, e.g. the number of positive sentiments heavily outnumbered the negative sentiments. Ensemble technique, which combines multiple classification algorithms to make decisions, can be used to tackle imbalanced data to learn from multiple balanced datasets. The decision of ensemble is obtained by combining the decisions of individual classifiers using a certain rule. Therefore, rule selection is an important factor in ensemble design. This research aims to investigate the best decision combination rule for imbalanced text data. Multinomial Naïve Bayes, Complement Naïve Bayes, Support Vector Machine, and Softmax Regression are used for base classifiers, and max, min, product, sum, vote, and meta-classifier rules are considered for decision combination. The experiment is done on several Twitter datasets. From the experimental results, it is found that the Softmax Regression ensemble with meta-classifier combination rule performs the best in all except in one dataset. However, it is also found that the training of the Softmax Regression ensemble requires intensive computational resources.

Copyrights © 2021






Journal Info

Abbrev

jitecs

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Information Technology and Computer Science (JITeCS) is a peer-reviewed open access journal published by Faculty of Computer Science, Universitas Brawijaya (UB), Indonesia. The journal is an archival journal serving the scientist and engineer involved in all aspects of information ...