IJCIT (Indonesian Journal on Computer and Information Technology)
Vol 5, No 2 (2020): November 2020

Analisis Algoritma Naive Bayes Classifier untuk Klasifikasi Tweet Pelecehan Seksual dengan #MeToo

Tia Adha Mariam Putri (Unknown)
Ultach Enri (Universitas Singaperbangsa Karawang)
Betha Nurina Sari (Universitas Singaperbangsa Karawang)



Article Info

Publish Date
03 Nov 2020

Abstract

Pelecehan seksual adalah perilaku yang ditandai oleh ketika seseorang membuat komentar seksual yang tidak diinginkan dan tidak pantas atau menyentuh secara fisik di tempat kerja atau situasi profesional atau situasi sosial. Permasalahan terhadap tweets yang mengandung curhatan para korban pelecehan seksual menjadi hal penting untuk dikaji sebagai pemrosesan teks. Analisis sentimen dapat digunakan sebagai solusi untuk mengidentifikasi tweets pelecehan seksual berdasarkan jenisnya dengan metode klasifikasi menggunakan algoritma Naïve Bayes Classifier. Naïve Bayes Classifier menggunakan metode probabilitas dan statistik setiap kelas dalam pembelajaran klasifikasinya, sehingga jarak perbedaan antar kelas tidak besar. Tujuan penelitian ini yaitu untuk mengklasifikasikan data tweets berdasarkan kelas quid pro quo dan hostile work environment. Pengujian pada penelitian ini dilakukan dengan empat skenario yang berbeda menggunakan bahasa pemrograman R dan tools RStudio yang kemudian dievaluasi menggunakan confusion matrix untuk menentukan model klasifikasi terbaik. Hasil evaluasi dengan confusion matrix didapatkan bahwa model klasifikasi terbaik adalah skenario dengan pembagian data training dan data testing 80:20. Skenario ini menghasilkan nilai akurasi sebesar 88.55% dengan recall 96.50%, precision 90.78%, dan f-measure 93.55%.Sexual harassment is behavior that is characterized by when someone makes an unwanted and inappropriate sexual comment or physical advances at work or a professional or social situation. The issue of tweets containing the experience of victims of sexual harassment becomes important to be examined as text processing. Sentiment analysis can be used as a solution to identify sexual harassment tweets by type by classification method using the Naïve Bayes Classifier algorithm. Naïve Bayes Classifier uses the probability and statistical methods of each class in its classification learning, so that the difference between classes is not large. The purpose of this study is to classify tweets data based on quid pro quo and hostile work environment classes. Testing in this study was carried out with four different scenarios using the R programming language and RStudio tools which were then evaluated using a confusion matrix to determine the best classification model. The results of the evaluation with the confusion matrix found that the best classification model is a scenario with the distribution of training data and testing data 70:30. This scenario produces an accuracy value of 88.55% with a recall 96.50%, precision 90.78%, and f-measure 93.55%.

Copyrights © 2020






Journal Info

Abbrev

ijcit

Publisher

Subject

Computer Science & IT

Description

Jurnal IJCIT Terbit pertama kali pada Bulan Mei Tahun 2016. Jurnal ini dimaksudkan sebagai media publikasi hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian pada bidang Teknik Informatika, Manajemen Informatika dan Sistem Informasi. Terbit secara berkala 2 (dua) kali ...