Bulletin of Chemical Reaction Engineering & Catalysis
2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)

Modification of Mordenite Characters by H2C2O4 and/or NaOH Treatments and Its Catalytic Activity Test in Hydrotreating of Pyrolyzed α-Cellulose

Triyono Triyono (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada)
Wega Trisunaryanti (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada)
Yessi Wydia Putri (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada)
Dyah Ayu Fatmawati (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada)
Uswatul Chasanah (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada)



Article Info

Publish Date
31 Mar 2021

Abstract

The research about modification of mordenite characteristics has been performed by H2C2O4 and/or NaOH treatments and catalytic activity tests in hydrotreating of pyrolyzed a-cellulose. Commercial mordenite (HSZ-604OA) as mordenite control (HM) immersed in 0.05, 0.5, and 1.0 M H2C2O4 at 70 °C for three hours resulting in HM-0.05, HM-0.5, and HM-1. The four mordenites were immersed in 0.1 M NaOH for 15 minutes resulting in BHM, BHM-0.05, BHM-0.5, and BHM-1. The catalysts obtained were analyzed by XRD, SAA, ICP, and acidity test. The catalytic activity of the mordenites was evaluated in hydrotreating of pyrolyzed a-cellulose using stainless steel reactor with an H2 gas flow rate of 20 mL.min−1 at 450 °C for two hours with a catalyst: feed weight ratio of 1:60. The liquid products obtained from the hydrotreating were analyzed using GC-MS. The research results showed that the H2C2O4 and/or NaOH treatment towards the mordenites increased Si/Al ratio and decreased crystallinity. The acidity of mordenites decreased along with the increase of the Si/Al ratio. The average pore diameter of BHM, BHM-0.05, BHM-0.5, and BHM-1 mordenites were 2.898; 3.005; 3.792; 7.429 nm, respectively. The BHM-0.5 mordenite showed the highest catalytic activity in generating liquid product (88.88 wt%) and selectivity toward propanol (4.87 wt%). The BHM-1 mordenite showed catalytic activity in generating liquid product (41.16 wt%) and selectivity toward ethanol (1.21 wt%) and 2-heptyne (4.36 wt%). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Copyrights © 2021






Journal Info

Abbrev

bcrec

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction ...