Sinergi
Vol 25, No 2 (2021)

CLASSIFICATION OF KIDNEY DISEASE USING GENETIC MODIFIED KNN AND ARTIFICIAL BEE COLONY ALGORITHM

Ardina Ariani (Graduate Program in Computer Science, Faculty of Computer Science, Universitas Sriwijaya)
Samsuryadi Samsuryadi (Department of Computer Science, Faculty of Computer Science, Universitas Sriwijaya)



Article Info

Publish Date
20 Feb 2021

Abstract

The health care system is currently improving with the development of intelligent artificial systems in detecting diseases. Early detection of kidney disease is essential by recognizing symptoms to prevent more severe damages. This study introduces a classification system for kidney diseases using the Artificial Bee Colony (ABC) algorithm and genetically modified K-Nearest Neighbor (KNN). ABC algorithm is used as a feature selection to determine relevant symptoms used in influencing kidney disease and Genetic modified KNN used for classification. This research consists of 3 stages: pre-processing, feature selection, and classification. However, it focuses on the pre-processing stage of chronic kidney disease using 400 records with 24 attributes for the feature selection and classification. Kidney disease data is classified into two classes, namely chronic kidney disease and not chronic kidney disease. Furthermore, the performance of the proposed method is compared with other methods. The result showed that an accuracy of 98.27% was obtained by dividing the dataset into 280 training and 120 test data.

Copyrights © 2021






Journal Info

Abbrev

sinergi

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

SINERGI is a peer-reviewed international journal published three times a year in February, June, and October. The journal is published by Faculty of Engineering, Universitas Mercu Buana. Each publication contains articles comprising high quality theoretical and empirical original research papers, ...