TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 19, No 4: August 2021

Online traffic classification for malicious flows using efficient machine learning techniques

Ying Yenn Chan (Universiti Teknologi Malaysia)
Ismahani Bt Ismail (Universiti Teknologi Malaysia)
Ban Mohammed Khammas (Al-Nahrain University)



Article Info

Publish Date
01 Aug 2021

Abstract

The rapid network technology growth causing various network problems, attacks are becoming more sophisticated than defenses. In this paper, we proposed traffic classification by using machine learning technique, and statistical flow features such as five tuples for the training dataset. A rule-based system, Snort is used to identify the severe harmfulness data packets and reduce the training set dimensionality to a manageable size. Comparison of performance between training dataset that consists of all priorities malicious flows with only has priority 1 malicious flows are done. Different machine learning (ML) algorithms performance in terms of accuracy and efficiency are analyzed. Results show that Naïve Bayes achieved accuracy up to 99.82% for all priorities while 99.92% for extracted priority 1 of malicious flows training dataset in 0.06 seconds and be chosen to classify traffic in real-time process. It is demonstrated that by taking just five tuples information as features and using Snort alert information to extract only important flows and reduce size of dataset is actually comprehensive enough to supply a classifier with high efficiency and accuracy which can sustain the safety of network.

Copyrights © 2021






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...