Journal of Applied Data Sciences
Vol 2, No 2: MAY 2021

Comparing Epsilon Greedy and Thompson Sampling model for Multi-Armed Bandit algorithm on Marketing Dataset

Umami, Izzatul (Unknown)
Rahmawati, Lailia (Unknown)



Article Info

Publish Date
23 Apr 2021

Abstract

A/B checking is a regular measure in many marketing procedures for e-Commerce companies. Through well-designed A/B research, advertisers can gain insight about when and how marketing efforts can be maximized and active promotions driven. Whilst many algorithms for the problem are theoretically well developed, empirical confirmation is typically restricted. In practical terms, standard A/B experimentation makes less money relative to more advanced machine learning methods. This paper presents a thorough empirical study of the most popular multi-strategy algorithms. Three important observations can be made from our results. First, simple heuristics such as Epsilon Greedy and Thompson Sampling outperform theoretically sound algorithms in most settings by a significant margin. In this report, the state of A/B testing is addressed, some typical A/B learning algorithms (Multi-Arms Bandits) used to optimize A/B testing are described and comparable. We found that Epsilon Greedy, be an exceptional winner to optimize payouts in this situation.

Copyrights © 2021






Journal Info

Abbrev

JADS

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

One of the current hot topics in science is data: how can datasets be used in scientific and scholarly research in a more reliable, citable and accountable way? Data is of paramount importance to scientific progress, yet most research data remains private. Enhancing the transparency of the processes ...