Jurnal Gaussian
Vol 10, No 1 (2021): Jurnal Gaussian

PENGARUH TRANSFORMASI DATA PADA METODE LEARNING VECTOR QUANTIZATION TERHADAP AKURASI KLASIFIKASI DIAGNOSIS PENYAKIT JANTUNG

Arafa Rahman Aziz (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Budi Warsito (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Alan Prahutama (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)



Article Info

Publish Date
28 Feb 2021

Abstract

Learning Vector Quantization (LVQ) is a type of Artificial Neural Network with a supervised learning process based on competitive learning. Despite the absence of assumptions in LVQ is an advantage, it can be a problem when the predictor variables have big different ranges.This problems can be overcome by equalizing the range of all variables by data transformation so that all variables have relatively same effect. Heart Disease UCI dataset which used in this study is transformed by several transformation methods, such as minmax, decimal scaling, z-score, mean-MAD, sigmoid, and softmax. The result show that the six transformed data can provide better LVQ classification accuracy than the raw data which has 75.99% for training performance accuracy. LVQ classification accuracy with data transformation of minmax, decimal scaling, z-score, mean-MAD, sigmoid, and softmax are 89.16%, 88.22%, 89.7%, 90.1%, 88.17% and 92.18%. Based on the One-way ANOVA test and DMRT post hoc test  known that there are significant differences between the results of the classification with data transformations and raw data in 0,05 significant level of α. It is also known that the best data transformation methods are softmax for training and sigmoid for testing. Keywords: heart disease, neural network, learning vector quantization, classification, data transformation

Copyrights © 2021






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...