JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI
Vol 8 No 2 (2021): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)

Pengenalan ASL Menggunakan Metode Ekstraksi HOG dan Klasifikasi Random Forest

Ningrum Larasati (Unknown)
Siska Devella (Unknown)
Muhammad Ezar Al Rivan (Unknown)



Article Info

Publish Date
17 Jun 2021

Abstract

Sign languages ​​have many types, one of them is the American Sign Language (ASL). This study uses the ASL alphabet handshape image extracted with the Histogram of Oriented Gradient (HOG) feature and the resulting feature is used for the Random Forest classification. The test results show that using the HOG feature and the Random Forest classification method for ASL recognition gives a good accuracy rate, with an overall accuracy value of 99.10%, an average accuracy value per class of 77.43%, an average value of precision 88.81%, and an average recall value of 88.65%.

Copyrights © 2021






Journal Info

Abbrev

jatisi

Publisher

Subject

Computer Science & IT

Description

JATISI bekerja sama dengan IndoCEISS dalam pengelolaannya. IndoCEISS merupakan wadah bagi para ilmuwan, praktisi, pendidik, dan penggemar dalam bidang komputer, elektronika, dan instrumentasi yang menaruh minat untuk memajukan bidang tersebut di Indonesia. JATISI diterbitkan 2 kali dalam setahun ...