Technomedia Journal
Vol 6 No 1 Agustus (2021): TMJ (Technomedia Journal)

Optimasi Backward Elimination untuk Klasifikasi Kepuasan Pelanggan Menggunakan Algoritme k-nearest neighbor (k-NN) and Naive Bayes

Yunitasari (Unknown)
Hopipah, Hopi Siti (Unknown)
Mayasari, Rini (Unknown)



Article Info

Publish Date
16 Jul 2021

Abstract

Maintaining customer satisfaction is a big challenge for companies. One effort that can be done is to provide the best service to customers based on the most influential aspects. In this study, the optimization of the Backward Elimination feature in the classification of customer satisfaction using the k-NN and Naïve Bayes algorithm. The use of the Backward Elimination feature aims to increase accuracy and reduce the number of less influential attributes. As a result, it can be seen that the best modeling without Backward Elimination is the Naïve Bayes algorithm with an accuracy of 99.04% and an AUC value of 1. While the application of Backward Elimination works more optimally on the k-NN algorithm with an increase of 33.74% to 97.28% with AUC 0.996. This shows that the performance of the Backward Elimination feature is effective in optimizing the classification of customer satisfaction and can reduce the less influential attributes.

Copyrights © 2021






Journal Info

Abbrev

TMJ

Publisher

Subject

Computer Science & IT Languange, Linguistic, Communication & Media

Description

Technomedia Journal (TMJ) adalah jurnal yang didedikasikan untuk pertukaran hasil penelitian berkualitas tinggi di semua aspek Informatika, Teknologi Informasi, dan Ilmu Data. TMJ ini merupakan bagian dari Pandawan Sejahtera Indonesia, serta didukung oleh Alphabet Incubator yang merupakan diseminasi ...