Penggunaan teknik ukur yang berbeda dalam pengelompokkan mengakibatkan hasil pengelompokkan yang berbeda pula. Pengujian data terhadap sejumlah k uji menjadikan penempatan anggota cluster obat tidak sama pada setiap pengukuran sehingga kemudian diperlukan optimalisasi cluster. Hal ini dapat menimbulkan keraguan bagi para pengguna data yang ingin memperoleh informasi yang akurat. Penelitian dilakukan untuk mengkaji perbandingan hasil optimalisasi cluster obat dengan menggunakan variabel ketegori, jenis dan satuan obat yang dikelompokkan dengan pengukuran numerik yakni Manhattan Distance, Canberra Distance dan Dynamic Time Warping Distance (DTWD) menggunakan teknik evaluasi cluster Davises Bouldin Index (DBI). Hasil pengujian yang diproleh melalui aplikasi RapidMiner menujukkan bahwa cluster optimal dari ketiga pengukuran tersebut terdapat pada k=2, k=3 dan k=2 dengan nilai DBI adalah 0,752, 0,873, dan 0, 868. Manhattan terpilih sebagai teknik ukur numerik yang lebih baik dari pada dua teknik lainnya karena memiliki nilai DBI terendah yang di uji pada k 2.
Copyrights © 2021