JISKa (Jurnal Informatika Sunan Kalijaga)
Vol. 6 No. 2 (2021): Mei 2021

Perbandingan Algoritma Klasifikasi Sentimen Twitter Terhadap Insiden Kebocoran Data Tokopedia

Nadhif Ikbar Wibowo (Institut Teknologi Sepuluh Nopember)
Tri Andika Maulana (Institut Teknologi Sepuluh Nopember)
Hamzah Muhammad (Institut Teknologi Sepuluh Nopember)
Nur Aini Rakhmawati (Institut Teknologi Sepuluh Nopember)



Article Info

Publish Date
03 May 2021

Abstract

Public responses, posted on Twitter reacting to the Tokopedia data leak incident, were used as a data set to compare the performance of three different classifiers, trained using supervised learning modeling, to classify sentiment on the text. All tweets were classified into either positive, negative, or neutral classes. This study compares the performance of Random Forest, Support-Vector Machine, and Logistic Regression classifier. Data was scraped automatically and used to evaluate several models; the SVM-based model has the highest f1-score 0.503583. SVM is the best performing classifier.

Copyrights © 2021






Journal Info

Abbrev

JISKA

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Library & Information Science

Description

JISKa (Jurnal Informatika Sunan Kalijaga) adalah jurnal yang mencoba untuk mempelajari dan mengembangkan konsep Integrasi dan Interkoneksi Agama dan Informatika yang diterbitkan oleh Departemen Teknik Informasi UIN Sunan Kalijaga Yogyakarta. JISKa menyediakan forum bagi para dosen, peneliti, ...