Bulletin of Chemical Reaction Engineering & Catalysis
2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021)

Size Selectivity of Anionic and Cationic Dyes Using LDH Modified Adsorbent with Low-Cost Rambutan Peel to Hydrochar

Normah Normah (Magister Programme Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang, South Sumatra)
Novie Juleanti (Magister Programme Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang, South Sumatra)
Patimah Mega Syah Bahar Nur Siregar (Magister Programme Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang, South Sumatra)
Alfan Wijaya (Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662)
Neza Rahayu Palapa (Graduate School of Faculty Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang, South Sumatra)
Tarmizi Taher (Departement of Environmental Engineering, Faculty of Mathematics and Natural Sciences, Insitut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Hui, Jati Agung, Lampung 35365)
Aldes Lesbani (Graduate School of Faculty Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang, South Sumatra)



Article Info

Publish Date
20 Dec 2021

Abstract

Modification of the layered double hydroxide of CuAl-LDHs by composite with hydrochar (HC) to form CuAl-HC LDH. Material characterization by XRD, FT-IR and SEM analysis was used to prove the success of the modification. The characterization of XRD and FT-IR spectra showed similarities to pure LDH and HC. Selectivity experiments were carried out by mixing malachite green, methylene blue, rhodamine-B, methyl orange, and methyl red to produce the most suitable methyl blue dye for CuAl-LDH, HC and CuAl-HC adsorbents. The effectiveness of CuAl-HC LDH as adsorbent on methylene blue adsorption was tested through several influences such as adsorption isotherm, thermodynamics, and adsorbent regeneration. CuAl-HC LDH adsorption isotherm data shows that the adsorption process tends to follow the Langmuir isotherm model with a maximum adsorption capacity of 175.439 mg/g with a threefold increase compared to pure LDH. The effectiveness of the adsorbent for repeated use reaches five cycles as evidenced by the maximum capacity regeneration data reaching 82.2%, 79.3%, 77.9%, 76.1%, and 75.8%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Copyrights © 2021






Journal Info

Abbrev

bcrec

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction ...