The detection of an object such as a human is very important for image understanding in the field of computer vision. Human detection in images can provide essential information for a wide variety of applications in intelligent systems. In this paper, human detection is carried out using deep learning that has developed rapidly and achieved extraordinary success in various object detection implementations. Recently, several embedded systems have emerged as powerful computing boards to provide high processing capabilities using the graphics processing unit (GPU). This paper aims to provide a comprehensive survey of the latest achievements in this field brought about by deep learning techniques in the embedded platforms. NVIDIA Jetson was chosen as a low power system designed to accelerate deep learning applications. This review highlights the performance of human detection models such as PedNet, multiped, SSD MobileNet V1, SSD MobileNet V2, and SSD inception V2 on edge computing. This survey aims to provide an overview of these methods and compare their performance in accuracy and computation time for real-time applications. The experimental results show that the SSD MobileNet V2 model provides the highest accuracy with the fastest computation time compared to other models in our video datasets with several scenarios.
Copyrights © 2021