Soil classification is a growing research area in the current era. Various studies have proposed different techniques to deal with the issues, including rule-based, statistical, and traditional learning methods. However, the plans remain drawbacks to producing an accurate classification result. Therefore, we propose a novel technique to address soil classification by implementing a deep learning algorithm to construct an effective model. Based on the experiment result, the proposed model can obtain classification results with an accuracy rate of 97% and a loss of 0.1606. Furthermore, we also received an F1-score of 98%.
Copyrights © 2021