International Journal of Electrical and Computer Engineering
Vol 12, No 2: April 2022

Land use/land cover classification using machine learning models

Subhra Swetanisha (KIIT Deemed to be University)
Amiya Ranjan Panda (KIIT Deemed to be University)
Dayal Kumar Behera (Silicon Institute of Technology)



Article Info

Publish Date
01 Apr 2022

Abstract

An ensemble model has been proposed in this work by combining the extreme gradient boosting classification (XGBoost) model with support vector machine (SVM) for land use and land cover classification (LULCC). We have used the multispectral Landsat-8 operational land imager sensor (OLI) data with six spectral bands in the electromagnetic spectrum (EM). The area of study is the administrative boundary of the twin cities of Odisha. Data collected in 2020 is classified into seven land use classes/labels: river, canal, pond, forest, urban, agricultural land, and sand. Comparative assessments of the results of ten machine learning models are accomplished by computing the overall accuracy, kappa coefficient, producer accuracy and user accuracy. An ensemble classifier model makes the classification more precise than the other state-of-the-art machine learning classifiers.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...