IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 10, No 4: December 2021

Delay aware downlink resource allocation scheme for future generation tactical wireless networks

Ravi Shankar H. (REVA University, Bangalore)
Kiran Kumari Patil (REVA University, Bangalore)



Article Info

Publish Date
01 Dec 2021

Abstract

For a very long time protecting physical border integrity is considered to be a challenging thing. Government organizations must provide trade operations for economic growth and at the same time must prevent malicious activity. A different resource such as drones, sensors, and radars are used for monitoring border areas which must be communicated to the remote border security force. Efficient wireless communication is required for communicating information. However, these devices cannot connect to a centralized network directly; thus, are connected in an ad-hoc fashion to connect centralized server. Different tactical network applications require different quality of service (QoS); hus efficient resource scheduling plays a very important role. Existing resource scheduling adopting deep learning and reinforcement techniques fails to meet the quality of experience (QoE) of the user and doesn’t assure access fairness among contending users. Further, require network information in prior and induce high training time. For overcoming research issues, this paper presents a delay-aware downlink resource scheduling (DADRA) technique for future generation networks. The optimization problem of reducing buffer overflow and improving scheduling QoS performance is solved using a genetic algorithm with an improved crossover function. Experiment outcome shows DADRA achieves much better throughput, slot utilization, and packet failure performance when compared with standard resource allocation technique.

Copyrights © 2021






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...