IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 10, No 4: December 2021

Effect of filter sizes on image classification in CNN: a case study on CFIR10 and Fashion-MNIST datasets

Owais Mujtaba Khanday (University of Miskolc)
Samad Dadvandipour (University of Miskolc)
Mohd Aaqib Lone (University of Miskolc)



Article Info

Publish Date
01 Dec 2021

Abstract

Convolution neural networks (CNN or ConvNet), a deep neural network class inspired by biological processes, are immensely used for image classification or visual imagery. These networks need various parameters or attributes like number of filters, filter size, number of input channels, padding stride and dilation, for doing the required task. In this paper, we focused on the hyperparameter, i.e., filter size. Filter sizes come in various sizes like 3×3, 5×5, and 7×7. We varied the filter sizes and recorded their effects on the models' accuracy. The models' architecture is kept intact and only the filter sizes are varied. This gives a better understanding of the effect of filter sizes on image classification. CIFAR10 and FashionMNIST datasets are used for this study. Experimental results showed the accuracy is inversely proportional to the filter size. The accuracy using 3×3 filters on CIFAR10 and Fashion-MNIST is 73.04% and 93.68%, respectively.

Copyrights © 2021






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...